Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.972
Filtrar
1.
Aging (Albany NY) ; 15(16): 8458-8470, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37632838

RESUMO

OBJECTIVE: Cognitive impairment, one of the most prevalent complications of trigeminal neuralgia, is troubling for patients and clinicians due to limited therapeutic options. Curcumin shows antinociception and neuroprotection pharmacologically, suggesting that it may have therapeutic effect on this complication. This study aimed to investigate whether curcumin alleviates orofacial allodynia and improves cognitive impairment by regulating hippocampal CA1 region synaptic plasticity in trigeminal neuralgia. METHODS: A mouse model of trigeminal neuralgia was established by partially transecting the infraorbital nerve (pT-ION). Curcumin was administered by gavage twice daily for 14 days. Nociceptive thresholds were measured using the von Frey and acetone test, and the cognitive functions were evaluated using the Morris water maze test. Dendritic spines and synaptic ultrastructures in the hippocampal CA1 area were observed by Golgi staining and transmission electron microscopy. RESULTS: Curcumin intervention increased the mechanical and cold pain thresholds of models. It decreased the escape latency and distance to the platform and increased the number of platform crossings and dwell time in the target quadrant of models, and improved spatial learning and memory deficits. Furthermore, it partially restored the disorder of the density and proportion of dendritic spines and the abnormal density and structure of synapses in the hippocampal CA1 region of models. CONCLUSION: Curcumin alleviates abnormal orofacial pain and cognitive impairment in pT-ION mice by a mechanism that may be related to the synaptic plasticity of hippocampal CA1, suggesting that curcumin is a potential strategy for repairing cognitive dysfunction under long-term neuropathic pain conditions.


Assuntos
Disfunção Cognitiva , Curcumina , Neuralgia do Trigêmeo , Animais , Camundongos , Hiperalgesia , Hipocampo , Modelos Animais de Doenças , Camundongos Mutantes Neurológicos , Plasticidade Neuronal
2.
Cereb Cortex ; 33(12): 7688-7701, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005058

RESUMO

The reeler mouse mutant has long served as a primary model to study the development of cortical layers, which is governed by the extracellular glycoprotein reelin secreted by Cajal-Retzius cells. Because layers organize local and long-range circuits for sensory processing, we investigated whether intracortical connectivity is compromised by reelin deficiency in this model. We generated a transgenic reeler mutant (we used both sexes), in which layer 4-fated spiny stellate neurons are labeled with tdTomato and applied slice electrophysiology and immunohistochemistry with synaptotagmin-2 to study the circuitry between the major thalamorecipient cell types, namely excitatory spiny stellate and inhibitory fast-spiking (putative basket) cells. In the reeler mouse, spiny stellate cells are clustered into barrel equivalents. In these clusters, we found that intrinsic physiology, connectivity, and morphology of spiny stellate and fast-spiking, putative basket cells does not significantly differ between reeler and controls. Properties of unitary connections, including connection probability, were very comparable in excitatory cell pairs and spiny stellate/fast-spiking cell pairs, suggesting an intact excitation-inhibition balance at the first stage of cortical sensory information processing. Together with previous findings, this suggests that thalamorecipient circuitry in the barrel cortex develops and functions independently of proper cortical lamination and postnatal reelin signaling.


Assuntos
Neurônios , Transdução de Sinais , Camundongos , Animais , Masculino , Feminino , Camundongos Mutantes Neurológicos , Neurônios/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética
3.
Neurosci Res ; 194: 7-14, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37011786

RESUMO

Reelin is a large secreted protein important for brain development and functions. In both humans and mice, the lack of Reelin gene causes cerebellar hypoplasia and ataxia. Treatment against Reelin deficiency is currently unavailable. Here, we show that the injection of recombinant Reelin protein into the cerebellum of Reelin-deficient reeler mice at postnatal day 3 ameliorates the forelimb coordination and mice are noted to stand up along cage wall more frequently. A mutant Reelin protein resistant to proteases has no better effect than the wild-type Reelin. Such ameliorations were not observed when a mutant Reelin protein that does not bind to Reelin receptors was injected and the injection of Reelin protein did not ameliorate the behavior of Dab1-mutant yotari mice, indicating that its effect is dependent on the canonical Reelin receptor-Dab1 pathway. Additionally, a Purkinje cell layer in reeler mice was locally induced by Reelin protein injection. Our results indicate that the reeler mouse cerebellum retains the ability to react to Reelin protein in the postnatal stage and that Reelin protein has the potential to benefit Reelin-deficient patients.


Assuntos
Proteínas da Matriz Extracelular , Proteína Reelina , Humanos , Camundongos , Animais , Camundongos Mutantes Neurológicos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Cerebelo , Proteínas do Tecido Nervoso/metabolismo
4.
Eur J Neurosci ; 57(10): 1657-1670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945758

RESUMO

Reelin, a large extracellular glycoprotein, plays a critical role in prenatal brain development and postnatally in synaptic plasticity, learning and memory. Dysregulation of Reelin signalling has been implicated in several neuropsychiatric disorders including schizophrenia, autism, depression and Alzheimer's disease. Previous studies have demonstrated that Reelin's central fragment, R3456, binds to ApoER2, inducing ApoER2 clustering and subsequent intracellular signalling. We previously reported the development of a novel luciferase complementation assay, which we used to demonstrate that R3456 can lead to ApoER2 receptor dimerization. Using this same assay, we explored various smaller fragments and combinations from R3456, and we identified a construct of repeats 3 and 6 (R36), which could still elicit equivalent receptor dimerization. The purpose of this study was to test R36 for biological effects in vitro and in vivo. We show that R36 was capable of initiating intracellular signalling in primary neuronal cultures. In addition, we demonstrate that a single intracerebroventricular injection of R36 protein into a model of Reelin deficiency, the heterozygous reeler mice, can significantly improve cognition. These data support a role for the new construct R36 to enhance the Reelin pathway, and the future possibility of exploring gene therapy approaches with R36 in diseases characterized by reduced levels of Reelin.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/genética , Camundongos Mutantes Neurológicos , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte
5.
Cell Mol Neurobiol ; 43(5): 2149-2163, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36219378

RESUMO

The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth. To answer this question, we used postnatal day (PND) 6 genotyped Wobbler pups to determine abnormalities of glia and neurons at this early age period in the spinal cord. We found astrogliosis, microgliosis with morphophenotypic changes pointing to active ameboid microglia, enhanced expression of the proinflammatory markers TLR4, NFkB, TNF, and inducible nitric oxide synthase. The astrocytic enzyme glutamine synthase and the glutamate-aspartate transporter GLAST were also reduced in PND 6 Wobbler pups, suggesting excitotoxicity due to impaired glutamate homeostasis. At the neuronal level, PND 6 Wobblers showed swollen soma, increased choline acetyltransferase immunofluorescence staining, and low expression of the neuronal nuclear antigen NeuN. However, vacuolated motoneurons, a typical signature of older clinically symptomatic Wobbler mice, were absent in the spinal cord of PND 6 Wobblers. The results suggest predominance of neuroinflammation and abnormalities of microglia and astrocytes at this early period of Wobbler life, accompanied by some neuronal changes. Data support the non-cell autonomous hypothesis of the Wobbler disorder, and bring useful information with regard to intervening molecular inflammatory mechanisms at the beginning stage of human motoneuron degenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Animais , Camundongos , Lactente , Doenças Neuroinflamatórias , Neurônios Motores , Inflamação , Neuroglia , Modelos Animais de Doenças , Gliose , Medula Espinal , Camundongos Mutantes Neurológicos
6.
Hippocampus ; 32(7): 517-528, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621370

RESUMO

Temporal lobe epilepsy is characterized by hippocampal neuronal death in CA1 and hilus. Dentate gyrus granule cells survive but show dispersion of the compact granule cell layer. This is associated with decrease of the glycoprotein Reelin, which regulates neuron migration and dendrite outgrow. Reelin-deficient (reeler) mice show no layering, their granule cells are dispersed throughout the dentate gyrus. We studied granule cell dendritic orientation and distribution of postsynaptic spines in reeler mice and two mouse models of temporal lobe epilepsy, namely the p35 knockout mice, which show Reelin-independent neuronal migration defects, and mice with unilateral intrahippocampal kainate injection. Granule cells were Golgi-stained and analyzed, using a computerized camera lucida system. Granule cells in naive controls exhibited a vertically oriented dendritic arbor with a small bifurcation angle if positioned proximal to the hilus and a wider dendritic bifurcation angle, if positioned distally. P35 knockout- and kainate-injected mice showed a dispersed granule cell layer, granule cells showed basal dendrites with wider bifurcation angles, which lost position-specific differences. Reeler mice lacked dendritic orientation. P35 knockout- and kainate-injected mice showed increased dendritic spine density in the granule cell layer. Molecular layer dendrites showed a reduced spine density in kainate-injected mice only, whereas in p35 knockouts no reduced spine density was seen. Reeler mice showed a homogenous high spine density. We hypothesize that granule cells migrate in temporal lobe epilepsy, develop new dendrites which show a spread of the dendritic tree, create new spines in areas proximal to mossy fiber sprouting, which is present in p35 knockout- and kainate-injected mice and loose spines on distal dendrites if mossy cell death is present, as it was in kainate-injected mice only. These results are in accordance with findings in epilepsy patients.


Assuntos
Epilepsia do Lobo Temporal , Animais , Dendritos/metabolismo , Giro Denteado , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Humanos , Ácido Caínico/toxicidade , Camundongos , Camundongos Mutantes Neurológicos , Neurônios/metabolismo
7.
Nat Commun ; 13(1): 828, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149721

RESUMO

The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.


Assuntos
Intestinos/metabolismo , Transcriptoma , Cicatrização , Animais , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Células Epiteliais , Feminino , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Transdução de Sinais
8.
Cereb Cortex ; 32(3): 504-519, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34339488

RESUMO

Patients with neurodevelopmental disorders show impaired motor skill learning. It is unclear how the effect of genetic variation on synaptic function and transcriptome profile may underlie experience-dependent cortical plasticity, which supports the development of fine motor skills. RELN (reelin) is one of the genes implicated in neurodevelopmental psychiatric vulnerability. Heterozygous reeler mutant (HRM) mice displayed impairments in reach-to-grasp learning, accompanied by less extensive cortical map reorganization compared with wild-type mice, examined after 10 days of training by intracortical microstimulation. Assessed by patch-clamp recordings after 3 days of training, the training induced synaptic potentiation and increased glutamatergic-transmission of cortical layer III pyramidal neurons in wild-type mice. In contrast, the basal excitatory and inhibitory synaptic functions were depressed, affected both by presynaptic and postsynaptic impairments in HRM mice; and thus, no further training-induced synaptic plasticity occurred. HRM exhibited downregulations of cortical synaptophysin, immediate-early gene expressions, and gene enrichment, in response to 3 days of training compared with trained wild-type mice, shown using quantitative reverse transcription polymerase chain reaction, immunohistochemisty, and RNA-sequencing. We demonstrated that motor learning impairments associated with modified experience-dependent cortical plasticity are at least partially attributed by the basal synaptic alternation as well as the aberrant early experience-induced gene enrichment in HRM.


Assuntos
Plasticidade Neuronal , Células Piramidais , Animais , Heterozigoto , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Destreza Motora/fisiologia , Plasticidade Neuronal/genética
9.
Acta Neuropathol Commun ; 9(1): 189, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819144

RESUMO

Peripheral administration (oral, intranasal, intraperitoneal, intravenous) of assembled A53T α-synuclein induced synucleinopathy in heterozygous mice transgenic for human mutant A53T α-synuclein (line M83). The same was the case when cerebellar extracts from a case of multiple system atrophy with type II α-synuclein filaments were administered intraperitoneally, intravenously or intramuscularly. We observed abundant immunoreactivity for pS129 α-synuclein in nerve cells and severe motor impairment, resulting in hindlimb paralysis and shortened lifespan. Filaments immunoreactive for pS129 α-synuclein were in evidence. A 70% loss of motor neurons was present five months after an intraperitoneal injection of assembled A53T α-synuclein or cerebellar extract with type II α-synuclein filaments from an individual with a neuropathologically confirmed diagnosis of multiple system atrophy. Microglial cells changed from a predominantly ramified to a dystrophic appearance. Taken together, these findings establish a close relationship between the formation of α-synuclein inclusions in nerve cells and neurodegeneration, accompanied by a shift in microglial cell morphology. Propagation of α-synuclein inclusions depended on the characteristics of both seeds and transgenically expressed protein.


Assuntos
Doenças Neurodegenerativas/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Idoso , Animais , Animais Geneticamente Modificados , Membro Posterior , Humanos , Imuno-Histoquímica , Masculino , Camundongos Mutantes Neurológicos , Microglia/patologia , Neurônios Motores/patologia , Transtornos dos Movimentos/patologia , Atrofia de Múltiplos Sistemas/patologia , Mutação , Doenças Neurodegenerativas/induzido quimicamente , Neurônios/metabolismo , Paralisia/induzido quimicamente , Paralisia/patologia , alfa-Sinucleína/administração & dosagem
10.
Nat Commun ; 12(1): 5091, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429415

RESUMO

Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Camundongos Mutantes Neurológicos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Remielinização/fisiologia , 5-Metilcitosina/análogos & derivados , Animais , Ciclo Celular , Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/genética , Genoma , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Organogênese , Proteínas Proto-Oncogênicas/genética
11.
Toxicol Pathol ; 49(4): 950-962, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691530

RESUMO

Scoring demyelination and regeneration in hematoxylin and eosin-stained nerves poses a challenge even for the trained pathologist. This article demonstrates how combinatorial multiplex immunohistochemistry (IHC) and quantitative digital pathology bring new insights into the peripheral neuropathogenesis of the Twitcher mouse, a model of Krabbe disease. The goal of this investigational study was to integrate modern pathology tools to traditional anatomic pathology microscopy workflows, in order to generate quantitative data in a large number of samples, and aid the understanding of complex disease pathomechanisms. We developed a novel IHC toolkit using a combination of CD68, periaxin-1, phosphorylated neurofilaments and SOX-10 to interrogate inflammation, myelination, axonal size, and Schwann cell counts in sciatic nerves from 17-, 21-, 25-, and 35-day-old wild-type and Twitcher mice using self-customized digital image algorithms. Our quantitative analyses highlight that nerve macrophage infiltration and interstitial expansion are the earliest detectable changes in Twitcher nerves. By 17 days of age, while the diameter of axons is small, the number of myelinated axons is still normal. However, from 21 days onward Twitcher nerves contain 75% of wild-type myelinated nerve fiber numbers despite containing 3 times more Schwann cells. In 35-day-old Twitcher mice when demyelination is detectable, nerve myelination drops to 50%.


Assuntos
Leucodistrofia de Células Globoides , Nervo Isquiático , Animais , Axônios , Modelos Animais de Doenças , Camundongos , Camundongos Mutantes Neurológicos , Regeneração Nervosa
12.
Neuropharmacology ; 187: 108495, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582152

RESUMO

Cannabis use is widespread among adolescents and has been associated with long-term negative outcomes on neurocognitive functions. However, the factors that contribute to the long-term detrimental effects of cannabis use remain poorly understood. Here, we studied how Reelin deficiency influences the behavior of mice exposed to cannabis during adolescence. Reelin is a gene implicated in the development of the brain and of psychiatric disorders. To this aim, heterozygous Reeler (HR) mice, that express reduced level of Reelin, were chronically injected during adolescence with high doses (10 mg/kg) of Δ9-tetrahydrocannabinol (THC), a major psychoactive component of cannabis. Two weeks after the last injection of THC, mice were tested with multiple behavioral assays, including working memory, social interaction, locomotor activity, anxiety-like responses, stress reactivity, and pre-pulse inhibition. Compared to wild-type (WT), HR mice treated with THC showed impaired social behaviors, elevated disinhibitory phenotypes and increased reactivity to aversive situations, in a sex-specific manner. Overall, these findings show that Reelin deficiency influences behavioral abnormalities caused by heavy consumption of THC during adolescence and suggest that elucidating Reelin signaling will improve our understanding of neurobiological mechanisms underlying behavioral traits relevant to the development of psychiatric conditions.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dronabinol/farmacologia , Proteína Reelina/genética , Interação Social/efeitos dos fármacos , Animais , Ansiedade , Comportamento Animal/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Mutantes Neurológicos , Teste de Campo Aberto , Proteína Reelina/deficiência , Proteína Reelina/metabolismo
13.
J Neurosci ; 41(1): 3-10, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408132

RESUMO

In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.


Assuntos
Axônios , Neurologia/história , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Animais , História do Século XX , Camundongos , Camundongos Mutantes Neurológicos , Neurônios/fisiologia , Vias Visuais/fisiologia
14.
Behav Brain Res ; 398: 112972, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091448

RESUMO

Anxiety-related behaviors in mice are often assessed over short periods starting immediately after introducing the animals in a dedicated apparatus. In these usual conditions (5-10 min periods), the cerebellar Lurcher mutants showed disinhibited behaviors characterized by abnormally high exploration of the aversive areas in the elevated plus-maze test. We nevertheless observed that this disinhibition sharply weakened after 10 min. We therefore decided to further investigate the influence of the disinhibition on the intrinsic and anxiety-related exploratory behaviors in Lurcher mice, with a special focus on familiarization effects. To this end, we used an innovative apparatus, the Dual Maze, permitting to tune the familiarization level of animals to the experimental context before they are faced with more (open configuration of the device) or less (closed configuration of the device) aversive areas. Chlordiazepoxide administration in BALB/c mice in a preliminary experiment confirmed both the face and the predictive validity of our device as anxiety test and its ability to measure exploratory motivation. The results obtained with the Lurcher mice in the open configuration revealed that 20 min of familiarization to the experimental context abolished the behavioral abnormalities they exhibited when not familiarized with it. In addition, their exploratory motivation, as measured in the closed configuration, was comparable to that of their non-mutant littermates, whatever the level of familiarization applied. Exemplifying the interest of this innovative device, the results we obtained in the Lurcher mutants permitted to differentiate between the roles played by the cerebellum in exploratory motivation and stress-related behaviors.


Assuntos
Ansiedade/fisiopatologia , Comportamento Exploratório/fisiologia , Inibição Psicológica , Aprendizagem em Labirinto/fisiologia , Motivação/fisiologia , Testes Neuropsicológicos , Reconhecimento Psicológico/fisiologia , Animais , Comportamento Animal/fisiologia , Cerebelo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes Neurológicos
15.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045061

RESUMO

Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1-deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1-deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K-AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1-deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.


Assuntos
Diabetes Mellitus Experimental/imunologia , Encefalomielite Autoimune Experimental/imunologia , Tolerância Imunológica , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diabetes Mellitus Experimental/genética , Encefalomielite Autoimune Experimental/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes Neurológicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Receptor de Morte Celular Programada 1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/genética
16.
Behav Brain Res ; 401: 113060, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316321

RESUMO

Exercise therapy represents an important tool for the treatment of many neurological diseases, including cerebellar degenerations. In mouse models, exercise may decelerate the progression of gradual cerebellar degeneration via potent activation of neuroprotective pathways. However, whether exercise could also improve the condition in mice with already heavily damaged cerebella remains an open question. Here we aimed to explore this possibility, employing a mouse model with dramatic early-onset cerebellar degeneration, the Lurcher mice. The potential of forced physical activity and environmental enrichment (with the possibility of voluntary running) for improvement of behaviour and neuroplasticity was evaluated by a series of behavioural tests, measuring BDNF levels and using stereological histology techniques. Using advanced statistical analysis, we showed that while forced physical activity improved motor learning by ∼26 % in Lurcher mice and boosted BDNF levels in the diseased cerebellum by 57 %, an enriched environment partially alleviated some behavioural deficits related to behavioural disinhibition. Specifically, Lurcher mice exposed to the enriched environment evinced reduced open arm exploration in elevated plus maze test by 18 % and increased immobility almost 9-fold in the forced swim test. However, we must conclude that the overall beneficial effects were very mild and much less clear, compared to previously demonstrated effects in slowly-progressing cerebellar degenerations.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo , Abrigo para Animais , Doenças Neurodegenerativas , Condicionamento Físico Animal/fisiologia , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Terapia por Exercício , Camundongos , Camundongos Mutantes Neurológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/reabilitação , Jogos e Brinquedos
17.
Cereb Cortex ; 31(3): 1427-1443, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33135045

RESUMO

The neocortex is composed of layers. Whether layers constitute an essential framework for the formation of functional circuits is not well understood. We investigated the brain-wide input connectivity of vasoactive intestinal polypeptide (VIP) expressing neurons in the reeler mouse. This mutant is characterized by a migration deficit of cortical neurons so that no layers are formed. Still, neurons retain their properties and reeler mice show little cognitive impairment. We focused on VIP neurons because they are known to receive strong long-range inputs and have a typical laminar bias toward upper layers. In reeler, these neurons are more dispersed across the cortex. We mapped the brain-wide inputs of VIP neurons in barrel cortex of wild-type and reeler mice with rabies virus tracing. Innervation by subcortical inputs was not altered in reeler, in contrast to the cortical circuitry. Numbers of long-range ipsilateral cortical inputs were reduced in reeler, while contralateral inputs were strongly increased. Reeler mice had more callosal projection neurons. Hence, the corpus callosum was larger in reeler as shown by structural imaging. We argue that, in the absence of cortical layers, circuits with subcortical structures are maintained but cortical neurons establish a different network that largely preserves cognitive functions.


Assuntos
Corpo Caloso/anatomia & histologia , Neocórtex/citologia , Vias Neurais/citologia , Neurônios/citologia , Animais , Mapeamento Encefálico , Camundongos , Camundongos Mutantes Neurológicos , Peptídeo Intestinal Vasoativo
18.
Neurosci Lett ; 740: 135469, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152455

RESUMO

Heterogeneous nuclear ribonuclear protein l-like (hnRNPLL) is an RNA binding protein that regulates alternative splicing of mRNA and is abundantly expressed in memory T lymphocytes of the immune system and in the brain. A hypomorphic allele of the gene encoding hnRNPLL (Hnrpllthunder) selectively reduces T cell accumulation in lymphoid tissues, but little is known about its effects in the brain. Therefore, we exposed Hnrpllthunder mice to a test battery with relevance for a range of psychiatric illnesses. Thunder mice showed enhanced immobility in the tail-suspension test for depression-related behaviours, impaired short-term spatial memory in the Y-maze and reduced avoidance learning in the active avoidance test. Thus, in addition to its reported effects on immune function, the hnRNPLL mutation in thunder mice selectively affected aspects of behaviour.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação/genética , Linfócitos T/imunologia , Alelos , Processamento Alternativo , Animais , Ansiedade/psicologia , Aprendizagem da Esquiva , Depressão/psicologia , Comportamento Exploratório , Feminino , Elevação dos Membros Posteriores/psicologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Reflexo de Sobressalto/genética , Memória Espacial
19.
Nat Neurosci ; 23(12): 1555-1566, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199896

RESUMO

Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their in vivo functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H2O2) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H2O2 scavenger. These H2O2--induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H2O2 from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Peróxido de Hidrogênio/metabolismo , Doença de Alzheimer/psicologia , Animais , Atrofia , Encéfalo/patologia , Morte Celular , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Degeneração Neural/patologia , Neuroglia , Neurônios/patologia , Memória Espacial , Tauopatias/patologia
20.
Neuropsychopharmacol Rep ; 40(4): 324-331, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32812711

RESUMO

AIMS: G protein-activated inwardly rectifying potassium (GIRK) channels are related to rewarding effects of addictive drugs. The GIRK2 subunit is thought to play key roles in the reward system. Weaver mutant mice exhibit abnormal GIRK2 function and different behaviors that are caused by several addictive substances compared with wild-type mice. However, mechanisms of reward-related alterations in weaver mutant mice remain unclear. The present study investigated changes in the rewarding effects of methamphetamine (METH) in weaver mutant mice. METHODS: The rewarding effects of METH (4.0 mg/kg) were investigated using the conditioned place preference (CPP) paradigm. Extracellular dopamine level in the nucleus accumbens (NAc) was measured by in vivo microdialysis. To identify brain regions that were associated with these changes in rewarding effects, METH-induced alterations of Fos expression were investigated by immunohistochemical analysis. RESULTS: Weaver mutant mice exhibited a significant decrease in METH-induced CPP and dopamine release in the NAc. Methamphetamine significantly increased Fos expression in the posterior NAc (pNAc) shell in wild-type but not in weaver mutant mice. CONCLUSIONS: Methamphetamine did not induce rewarding effects in weaver mutant mice. The pNAc shell exhibited a significant difference in neuronal activity between wild-type and weaver mutant mice. The present results suggest that the absence of METH-induced CPP in weaver mutant mice is probably related to an innate reduction of dopamine and decreased neural activity in the pNAc shell that is partially attributable to the change of GIRK channel function. GIRK channels, especially those containing the GIRK2 subunit, appear to be involved in METH dependence.


Assuntos
Condicionamento Clássico/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Metanfetamina/administração & dosagem , Mutação/genética , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes Neurológicos , Microdiálise/métodos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...